Robust Feature Selection by Mutual Information Distributions
نویسندگان
چکیده
Mutual information is widely used in artificial intelligence, in a descriptive way, to measure the stochastic dependence of discrete random variables. In order to address questions such as the reliability of the empirical value, one must consider sample-to-population inferential approaches. This paper deals with the distribution of mutual information, as obtained in a Bayesian framework by a second-order Dirichlet prior distribution. The exact analytical expression for the mean and an analytical approximation of the variance are reported. Asymptotic approximations of the distribution are proposed. The results are applied to the problem of selecting features for incremental learning and classification of the naive Bayes classifier. A fast, newly defined method is shown to outperform the traditional approach based on empirical mutual information on a number of real data sets. Finally, a theoretical development is reported that allows one to efficiently extend the above methods to incomplete samples in an easy and effective way.
منابع مشابه
On the Feature Selection Criterion Proposed in ‘Gait Feature Subset Selection by Mutual Information’
Abstract Recently, Guo and Nixon [1] proposed a feature selection method based on maximizing I(x; Y ), the multidimensional mutual information between feature vector x and class variable Y . Because computing I(x; Y ) can be difficult in practice, Guo and Nixon proposed an approximation of I(x; Y ) as the criterion for feature selection. We show that Guo and Nixon’s criterion originates from ap...
متن کاملFeature Selection Facilitates Learning Mixtures of Discrete Product Distributions
Feature selection can facilitate the learning of mixtures of discrete random variables as they arise, e.g. in crowdsourcing tasks. Intuitively, not all workers are equally reliable but, if the less reliable ones could be eliminated, then learning should be more robust. By analogy with Gaussian mixture models, we seek a low-order statistical approach, and here introduce an algorithm based on the...
متن کاملFeature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine
Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods. In filter methods, features subsets are selected due to some measu...
متن کاملCopula-based Kernel Dependency Measures
The paper presents a new copula based method for measuring dependence between random variables. Our approach extends the Maximum Mean Discrepancy to the copula of the joint distribution. We prove that this approach has several advantageous properties. Similarly to Shannon mutual information, the proposed dependence measure is invariant to any strictly increasing transformation of the marginal v...
متن کاملVariational Information Maximization for Feature Selection
Feature selection is one of the most fundamental problems in machine learning. An extensive body of work on information-theoretic feature selection exists which is based on maximizing mutual information between subsets of features and class labels. Practical methods are forced to rely on approximations due to the difficulty of estimating mutual information. We demonstrate that approximations ma...
متن کاملMutual information formalism
As a theoretical basis of mRMR feature selection, we consider a more general feature-selection criterion, maximum dependency (MaxDep).1 In this case, we select the feature set Sm = {f1, f2, ..., fm}, of which the joint statistical distribution is maximally dependent on the distribution of the classification variable c. A convenient way to measure this statistical dependency is mutual information,
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002